Схема трехфазного подключения тэнов через теплореле и контактор. Устройство и схемы подключения тэн Схема подключения тэна на 380

Оптимальным источником энергии, для нагрева испарительной емкости, является квартирная электрическая сеть, напряжением 220 В. Можно просто использовать для этих целей бытовую электроплиту. Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы. Эта, понапрасну затрачиваемая энергия, может достигать приличных значений - до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить. Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать. Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U .

Где I - сила тока в амперах.

P - мощность в ваттах.

U - напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт . Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

R = U / I, где

R - сопротивление в Омах

U - напряжение в вольтах

I - сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Rобщ = R1+ R2 + R3 и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P = U 2 / R где,

P - мощность в ваттах

U 2 - напряжение в квадрате, в вольтах

R - общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт , округляем до значения 625 Вт .

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Таблица 1.1

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Напряжение (В) Сила тока (А)
1 1250,000 38,725 220 5,68
Последовательное соединение
2 625 2 ТЭН = 77,45 220 2,84
3 416 3 ТЭН =1 16,175 220 1,89
4 312 4 ТЭН=154,9 220 1,42
5 250 5 ТЭН=193,625 220 1,13
6 208 6 ТЭН=232,35 220 0,94
7 178 7 ТЭН=271,075 220 0,81
8 156 8 ТЭН=309,8 220 0,71

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Таблица 1.2

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Напряжение (В) Сила тока (А)
Параллельное соединение
2 2500 2 ТЭН=19,3625 220 11,36
3 3750 3 ТЭН=12,9083 220 17,04
4 5000 4 ТЭН=9,68125 220 22,72
5 6250 5 ТЭН=7,7450 220 28,40
6 7500 6 ТЭН=6,45415 220 34,08
7 8750 7 ТЭН=5,5321 220 39,76
8 10000 8 ТЭН=4,840 220 45,45

Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же ресурс работы ТЭНов, при таком включении, будет практически вечным.

Терморегулятор предназначен для поддержания заданной температуры путём управления нагревательными (охладительными) элементами.

Данные устройства бывают нескольких видов, начиная простыми механическими и заканчивая электронными многофункциональными и даже интеллектуальными устройствами.

Принцип работы состоит в том, что в устройстве есть выносной термодатчик, который сообщает устройству температуру окружающей среды. Для поддержания и регулировки заданного предела как раз и используется терморегулятор. Применяются для поддержания в различных устройствах, таких как: холодильник, тёплый пол, водяное отопление или нагреватели, инкубатор, теплицы и т.п.

Подключение ТЭНа с терморегулятором

Рассмотрим принцип работы и схему включения.

Они используются для бойлеров и котлов отопления. Берём универсальный на 220В и 2-4,5кВт, обычный, с чувствительным элементом в виде трубочки, помещается он внутрь ТЭНа, в котором есть специальное отверстие.

Тут видим 3 пары нагревательных элементов, итого шесть, подключать нужно следующим образом: на три садим ноль и на другие 3 – фазу. В разрыв цепи вставляем как раз наше устройство. Он имеет три контакта, на фото ниже видно один по центру сверху и два снизу. Верхний используется для включения к нулю, а какой из нижних к фазе надо проверить тестером.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева сосуда и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I - сила тока в амперах.

P - мощность в ваттах.

U - напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

R = U / I, где

R - сопротивление в Омах

U - напряжение в вольтах

I - сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Rобщ = R1+ R2 + R3 и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P = U2 / R где,

P - мощность в ваттах

R - общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Таблица 1.1

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

Последовательное соединение

2 ТЭН = 77,45

3 ТЭН =1 16,175

5 ТЭН=193,625

7 ТЭН=271,075

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Таблица 1.2

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

Параллельное соединение

2 ТЭН=19,3625

3 ТЭН=12,9083

4 ТЭН=9,68125

6 ТЭН=6,45415

Регуляторы температуры в бытовых целях используют довольно широко, а регулируют они температуру буквально везде: от банального паяльника до микроклимата в доме.

Монтаж системы «термореле-пускатель-нагреватель»

Начну объяснение с подключения системы «теплофон» к трехфазной сети по следующей схеме.

Между нулевым проводом сети и первой фазой последовательно включаются терморегулятор Т1 и катушка пускателя К1. Элементы нагревателя R1-R15 подключаются равномерно между нулевым проводом и каждой из фаз сети через нормально разомкнутые контакты пускателя К1.1 — К1.3. Пускатель, в данном случае, был выбран марки АВВ 20-40, 4р.

Работает такая схема так:

Когда температура контролируемого помещения приближается к порогу включения термореле (нижняя уставка), последнее срабатывает и своими контактами подключает к сети питания нагревательные элементы (ТЭНЫ) обогревателя.

После того, как температура помещения достигает верхней уставки, термореле отпускает, отключая питание пускателя, который, в свою очередь, обесточивает нагреватели.

Существует множество всевозможных вариантов исполнения термореле, в том числе и совсем миниатюрные варианты, однако, их максимальная коммутируемая мощность довольно невелика (не более пары киловатт), а подключать к ним напрямую можно и того меньше (из соображения наличия запаса мощности).

Самым идеальным вариантом для управления ТЭНами можно назвать такой вариант, при котором «термушка» будет через небольшой электронный блочок управлять магнитным пускателем (например, типа ПМЕ), который, в свою очередь займется управлением нагревателями, мощность которых может запросто превышать 1500 ватт.

Работает такая схемка следующим образом.
При срабатывании терморегулятора, сигнал от него поступает на мощный транзисторный ключ, выполненный на основе биполярного транзистора, в коллекторную цепь которого подключено электромагнитное реле (к примеру, РЭС-9).

Питается схема от нестабилизированного источника, собранного не трансформаторе Т1 и выпрямителе VD1-VD4.

Реле, срабатывая, подает питание на пускатель ПМЕ, который, в свою очередь, своими нормально открытыми контактами К2.1 и К2.2 подает питание на нагревательные элементы.

Вся схема запитывается через FU1.

После сборки блока регулировки-коммутации необходимо, в первую очередь, проверить правильность монтажа, лишь после этого приступать к настройке всей системы. При безошибочно собранной системе не требуется никаких наладочных работ.

После этого можно начинать настройку его.

Единственное, что надо будет сделать, чтобы правильно настроить систему, выставить уставку опорного напряжения компаратора (устройства сравнения) на выводе 2 устройства, соответствующую необходимой температуре срабатывания. С этой целью придется немного посчитать.

Допустим, что нам необходимо поддерживать температуру помещения в районе +22 градусов Цельсия. В этом случае необходимо перевести значение температуры в шкалу Кельвина, после чего полученное умножить на 0,01 В. В результате этих вычислений и получится значение опорного напряжения, являющееся, одновременно, уставкой температуры (273,15+22)*0,01=2,9515 В.

Надеюсь, моя статья пролила свет на некоторые непонятки этой темы.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.

Таможенный союз. Декларация о соответствии № ТС RU Д-RU.АВ98.В.00706
Срок действия c 30.12.2014г. по 25.12.2019г.
Изготовлено по ТУ 3443-009-49110786-2002.
Соответствует требованиям технического регламента
Таможенного союза ТР ТС 004/2011

Схемы соединения ТЭН (однофазная сеть)

Трубчатые электронагреватели (ТЭНы) как и другие потребители электроэнергии подключаются как к однофазной так и к трехфазной сети.

При подключении к однофазной сети (1 «фаза» и «ноль») более чем одного ТЭНа используется параллельная, последовательная либо комбинированная схемы подключения.

1. Параллельное соединение ТЭН

При параллельном соединении действуют следующие основные законы:

  • Напряжение на каждом ТЭНе постоянно и равно напряжению в сети;
  • При выходе из строя одного из ТЭН, остальные продолжают работать;
  • Суммарная мощность сборки складывается из мощностей всех ТЭНов, установленных параллельно;
  • Если параллельно установлены ТЭНы разной мощности, то суммарная мощность считается по формуле: P общ =U 2 /R общ, где P общ - суммарная мощность, U- напряжение, R общ – суммарное сопротивление сборки. Суммарное сопротивление сборки Rобщ рассчитывается по формуле: 1/R общ =1/R 1 +1/R 2 +1/R 3 .

2. Последовательное соединение ТЭН

При последовательном соединении действуют следующие основные законы:

  • Общее сопротивление сборки складывается из сопротивлений всех ТЭНов, установленных последовательно;
  • Если последовательно установлены ТЭНы одинакового сопротивления, то напряжение на каждом ТЭНе равно общему напряжению сети деленному на количество ТЭНов в сборке. Другими словами: U общ =U 1 +U 2 +U 3 .
  • Общая мощность сборки ТЭН считается по формуле P общ =U общ 2 /R общ, где P общ - суммарная мощность, U общ - общее напряжение сети, R общ - суммарное сопротивление сборки ТЭН. Суммарное сопротивление сборки R общ рассчитывается по формуле: R общ =R 1 +R 2 +R 3 .
  • При выходе из строя одного ТЭНа обрывается общая цепь и остальные ТЭНы также перестают работать.

3. Комбинированное соединение ТЭН

При комбинированном соединении ТЭН, следует разбивать цепь на несколько участков (А и Б), для которых соответственно будут действовать законы либо параллельного (А), либо последовательного (Б) соединения.

Значение напряжения на всех схемах указано при подключении к сети – 220V.

Схемы соединения ТЭН (трехфазная сеть)

Трубчатые электронагреватели (ТЭНы) как и другие потребители электроэнергии подключаются как к однофазной так и к трехфазной сети. При подключении к трехфазной сети (3 «фазы» и «ноль») используются две основные схемы соединений («звезда» и «треугольник»). С целью равномерности распределения нагрузки по фазам, количество подключаемых ТЭНов следует выбирать кратным числу 3.

1. Соединение ТЭНов - «звезда»

Основные законы, которые действуют при соединении ТЭНов «звездой»:

  • Между любой «фазой» и «нулем» всегда 220В!
  • В каждую ветвь «звезды» можно подключать несколько ТЭНов, соединенных между собой последовательно либо параллельно (см. схемы соединения в однофазной сети).
  • Мощность каждой ветви «звезды» должна быть одинакова.

2. Соединение ТЭНов – «треугольник»

Основные законы, которые действуют при соединении ТЭНов «треугольником»:

  • Между любыми двумя «фазами» всегда 380В!
  • В каждую ветвь «треугольника» можно подключать несколько ТЭНов, соединенных между собой последовательно либо параллельно (см. схемы соединения в однофазной сети).
  • Мощность каждой ветви «треугольника» должна быть одинакова.
  • Суммарная мощность соединения складывается из мощностей трёх ветвей.

Значение напряжения на всех схемах указано при подключении к трехфазной сети – 380V.