Конспект "методы селекции растений и животных". Методы селекции Селекция животных: методы

Основные термины и понятия.

Исходный материал - линии, сорта, виды, роды культурных или диких растений или животных, обладающих ценными хозяйственными качествами или экстерьером.

Гибридизация (от греч. "гибрис" - помесь) - естественное или искусственное скрещивание особей, относящихся к различным линиям, сортам, породам, видам, родам растений или животных.

Сорт - совокупность культурных растений одного вида, искусственно созданная человеком и характеризующаяся: а) определенными наследственными особенностями, б) наследственно закрепленной продуктивностью, в) структурными (морфологическими) признаками.

Порода - совокупность домашних животных одного вида, искусственно созданная человеком и характеризующаяся: а) определенными наследственными особенностями, б) наследственно закрепленной продуктивностью, в) экстерьером.

Линия - потомство одной самоопыляющейся особи у растений, потомство от близкородственного скрещивания у животных, имеющих большинство генов в гомозиготном состоянии.

Инбридинг (инцухт, пo-английски - "разведение в себе") - близкородственное скрещивание сельскохозяйственных животных. Принудительное самоопыление у перекрестноопыляющихся растений.

Инбредная депрессия - снижение жизнеспособности и продуктивности у животных и растений, полученных путем инбридинга, вследствие перехода большинства генов в гомозиготное состояние.

Гетерозис - мощное развитие гибридов, полученных при скрещивании инбредных (чистых) линий, одна из которых гомозиготная по доминантным, другая - по рецессивным генам.

Подвой - корнесобственное (укорененное) растение, на которое производится прививка.

Привой - черенок растения или почка, которые прививаются на корнесобственное растение.

Полиплоидия - кратное увеличение диплоидного или гаплоидного набора хромосом, вызванное мутацией.

Мутагенез (от лат. "мутацио" - перемена, изменение и греч. "генос" - образующий) - метод в селекции высших растений и микроорганизмов, который позволяет искусственно получать мутации с целью увеличения продуктивности.

Биотехнология - использование живых организмов и биологических процессов в производстве. Биологическая очистка сточных вод, биологическая защита растений, а также синтез в промышленных условиях кормовых белков, аминокислот, получение ранее недоступных препаратов (гормон инсулин, ростовой гормон, интерферон), создание новых сортов растений, пород животных, видов микроорганизмов и т. д. - это главные направления новой отрасли науки и производства.

Генная инженерия - наука, создающая новые комбинации генов в молекуле ДНК. Возможность рассекать и сращивать молекулу ДНК позволила создать гибридную клетку бактерии с генами человека, ответственными за синтез гормона инсулина и интерферона. Эта разработка применяется в фармацевтической промышленности для получения лекарственных препаратов. С помощью пересадки генов создаются растения, устойчивые к болезням, неблагоприятным условиям среды, с более высоким эффектом фотосинтеза и фиксирования атмосферного азота.

ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ НАСЛЕДСТВЕННОЙ ИЗМЕНЧИВОСТИ (Н. И. ВАВИЛОВ):

Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости.

Таблица 53. Центры происхождения культурных растений (по Н. И. Вавилову)

Название центра Географическое положение Родина культурных растений
Южноазиатский тропический Тропическая Индия, Индокитай, Южный Китай, о-ва Юго-Восточной Азии Рис, сахарный тростник, огурец, баклажан, черный перец, цитрусовые и др. (50% культурных растений)
Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры - слива, вишня, редька и др. (20% культурных растений)
Юго-западно-азиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, морковь, чеснок, виноград, абрикос, груша и др. (14% культурных растений)
Средиземноморский Страны по берегам Средиземного моря Капуста, сахарная свекла, маслины, клевер, чечевица и другие кормовые травы (11% культурных растений)
Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, кофе, сорго, бананы
Центрально-американский Южная Мексика Кукуруза, длинноволокнистый хлопчатник, какао, тыква, табак
Андийский (Южноамериканский) Южная Америка (вдоль западного побережья) Картофель, ананас, кокаиновый куст, хинное дерево

Таблица 54. Основные методы селекции

Методы Селекция животных Селекция растений
Подбор родительских пар По хозяйственно ценным признакам и по экстерьеру (совокупности фенотипических признаков) По месту их происхождения (географически удаленных) или генетически отдаленных (неродственных)
Гибридизация:
а) неродственная (аутбридинг) Скрещивание отдаленных пород, отличающихся контрастными признаками, для получения гетерозиготных популяций и проявления гетерозиса. Получается бесплодное потомство Внутривидовое, межвидовое, межродовое скрещивание, ведущее к гетерозису, для получения гетерозиготных популяций, а также высокой продуктивности
б) близкородственная (инбридинг) Скрещивание между близкими родственниками для получения гомозиготных (чистых) линий с желательными признаками Самоопыление у перекрестноопыляющихся растений путем искусственного воздействия для получения гомозиготных (чистых) линий
Отбор:
а) массовый Не применяется Применяется в отношении перекрестноопыляющихся растений
б) индивидуальный Применяется жесткий индивидуальный отбор по хозяйственно ценным признакам, выносливости, экстерьеру Применяется в отношении самоопыляющихся растений, выделяются чистые линии - потомство одной самоопыляющейся особи
Метод испытания производителей по потомству Используют метод искусственного осеменения от лучших самцов-производителей, качества которых проверяют по многочисленному потомству Не применяется
Экспериментальное получение полипоидов Не применяется Применяется в генетике и селекции для получения более продуктивных, урожайных форм

Таблица 55. Методы селекционно-генетической работы И. В. Мичурина

Методы Сущность метода Примеры
Биологически отдаленная гибридизация:

а) межвидовая

Скрещивание представителей разных видов для получения сортов с нужными свойствами Вишня владимирская X черешня Винклера белая = вишня Краса севера (хороший вкус, зимостойкость)
б) межродовая Скрещивание представителей разных родов для получения новых растений Вишня Х черемуха = Церападус
Географически отдаленная гибридизация Скрещивание представителей контрастных природных зон и географически отдаленных регионов с целью привить гибриду нужные качества (вкусовые, устойчивости) Груша дикая уссурийская Х Бере рояль (Франция) = Бере зимняя Мичурина
Отбор Многократный, жесткий: по размерам, форме, зимостойкости, иммунным свойствам, качеству, вкусу, цвету плодов и их лежкости Продвинуто на север много сортов яблонь с хорошими вкусовыми качествами и высокой урожайностью
Метод ментора Воспитание в гибридном сеянце желательных качеств (усиление доминирования), для чего сеянец прививается на растение-воспитатель, от которого эти качества хотят получить. Чем ментор старше, мощнее, длительнее действует, тем его влияние сильнее Яблоня Китайка (подвой) X гибрид (Китайка Х Кандиль-синап) = Кандиль-синап (морозостойкий)

Бельфлер-китайка (гибрид-подвой) X Китайка (привой) = Бельфлер-китайка (лежкий позднеспелый сорт)

Метод посредника При отдаленной гибридизации для преодоления нескрещиваемости использование дикого вида в качестве посредника Дикий монгольский миндаль Х дикий персик Давида = миндаль Посредник.

Культурный персик X миндаль Посредник = гибридный персик (продвинут на север)

Воздействие условиями среды При воспитании молодых гибридов обрашалось внимание на метод хранения семян, характер и степень питания, воздействие низкими температурами, бедной питанием почвой, частыми пересадками Закаливание гибридного сеянца. Отбор наиболее выносливых растений
Смешение пыльцы Для преодоления межвидовой нескрещиваемости (несовместимости) Смешивалась пыльца материнского растения с пыльной отцовского, своя пыльца раздражала рыльце, и оно воспринимало чужую пыльцу

Задачи и тесты по теме "Тема 13. "Селекция"."

  • Селекция и биотехнология - Основы генетики. Закономерности наследования Общие биологические закономерности (9–11 класс)

    Уроков: 3 Заданий: 9 Тестов: 1

  • Итоговая проверка знаний по темам «Плоские, Круглые и Кольчатые черви» - Беспозвоночные животные (кроме Членистоногих) Животные (7 класс)

    Заданий: 20 Тестов: 2

  • Работа эндокринной системы и её нарушения - Эндокринная система Человек (8 класс)

    Уроков: 1 Заданий: 8 Тестов: 1

  • Направления биологии

    Уроков: 3 Заданий: 4 Тестов: 1

  • Методы исследования в биологии. Устройство увеличительных приборов - Биология - учение о живых организмах Бактерии. Грибы. Растения (5–6 класс)

    Уроков: 4 Заданий: 5 Тестов: 1

Проработав эти темы, Вы должны уметь:

  1. Дать определения: ген, доминантный признак; рецессивный признак; аллель; гомологичные хромосомы; моногибридное скрещивание, кроссинговер, гомозиготный и гетерозиготный организм, независимое распределение, полное и неполное доминирование, генотип, фенотип.
  2. С помощью решетки Пеннета проиллюстрировать скрещивание по одному или двум признакам и указать, каких численных отношений генотипов и фенотипов следует ожидать в потомстве от этих скрещиваний.
  3. Изложить правила наследования, расщепления и независимого распределения признаков, открытие которых было вкладом Менделя в генетику.
  4. Объяснить как мутации могут повлиять на белок, кодируемым тем или иным геном.
  5. Указать возможные генотипы людей с группами крови А; В; АВ; О.
  6. Привести примеры полигенных признаков.
  7. Указать хромосомный механизм определения пола и типы наследования сцепленных с полом генов млекопитающих, использовать эти сведения при решении задач.
  8. Объяснить, в чем заключается различие между признаками, сцепленными с полом и признаками, зависимыми от пола; привести примеры.
  9. Объяснить, как наследуются такие генетические заболевания человека как гемофилия, дальтонизм, серповидно-клеточная анемия.
  10. Назвать особенности методов селекции растений, животных.
  11. Указать основные направления биотехнологии.
  12. Уметь решать по данному алгоритму простейшие генетические задачи:

    Алгоритм решения задач

    • Определите доминантный и рецессивный признак по результатам скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные обозначения: А - доминантный а - рецессивный.
    • Запишите генотип особи с рецессивным признаком или особи с известным по условию задачи генотипом и гаметы.
    • Запишите генотип гибридов F1.
    • Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в решетку Пеннета по горизонтали и по вертикали.
    • Запишите генотипы потомства в клетках пересечения гамет. Определите соотношения фенотипов в F1.

Схема оформления задач.

Буквенные обозначения:
а) доминантный признак _______________
б) рецессивный признак _______________

Гаметы

F1 (генотип первого поколения)

гаметы
? ?

Решетка Пеннета

F2
гаметы ? ?
?
?

Соотношение фенотипов в F2: _____________________________
Ответ:_________________________

Примеры решения задач на моногибридное скрещивание.

Задача. "В семье Ивановых двое детей: кареглазая дочь и голубоглазый сын. Мама этих детей голубоглазая, но ее родители имели карие глаза. Как наследуется окраска глаз у человека? Каковы генотипы всех членов семьи? Окраска глаз - моногенный аутосомный признак".

Признак окраски глаз контролируется одним геном (по условию). Мама этих детей голубоглазая, а ее родители имели карие глаза. Это возможно только в ТОМслучае, если оба родителя были гетерозиготны, следовательно, карие глаза доминируют над голубыми. Таким образом, бабушка, дедушка, папа и дочь имели генотип (Аа), а мама и сын - аа.

Задача. "Петух с розовидным гребнем скрещен с двумя курицами, тоже имеющими розовидный гребень. Первая дала 14 цыплят, все с розовидным гребнем, а вторая - 9 цыплят, из них 7 с розовидным и 2 с листовидным гребнем. Форма гребня - моногенный аутосомный признак. Каковы генотипы всех трех родителей?"

До определения генотипов родителей необходимо выяснить характер наследования формы гребня у кур. При скрещивании петуха со второй курицей появились 2 цыпленка с листовидным гребнем. Это возможно при гетерозиготности родителей, следовательно, можно предположить, что розовидный гребень у кур доминирует над листовидным. Таким образом, генотипы петуха и второй курицы - Аа.

При скрещивании этого же петуха с первой курицей расщепления не наблюдалось, следовательно, первая курица была гомозиготной - АА.

Задача. "В семье кареглазых праворуких родителей родились разнояйцевые близнецы, один из которых кареглазый левша, а другой голубоглазый правша. Какова вероятность рождения следующего ребенка, похожим на своих родителей?"

Рождение у кареглазых родителей голубоглазого ребенка свидетельствует о рецессивности голубой окраски глаз, соответственно рождение у праворуких родителей леворукого ребенка указывает на рецессивность лучшего владения левой рукой по сравнению с правой. Введем обознанения аллелей: А - карие глаза, а - голубые глаза, В - правша, в - левша. Определим генотипы родителей и детей:

Р АаВв х АаВв
F, А_вв, ааВ_

А_вв - фенотипический радикал, который показывает, что данный ребенок с левша с карими глазами. Генотип этого ребенка может быть - Аавв, ААвв.

Дальнейшее решение этой задачи осуществляется традиционным способом, путем построения решетки Пеннета.

АВ Ав аВ Ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ АаВв
ав АаВв Аавв ааВв Аавв

Подчеркнуты 9 вариантов потомков, которые нас интересуют. Всего возможных вариантов 16, поэтому вероятность рождения ребенка, похожим на своих родителей равна 9/16.

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 10. "Моногибридное и дигибридное скрещивание." §23-24 стр. 63-67
  • Тема 11. "Генетика пола." §28-29 стр. 71-85
  • Тема 12. "Мутационная и модификационная изменчивость." §30-31 стр. 85-90
  • Тема 13. "Селекция." §32-34 стр. 90-97

— создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами. Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции служит генетика.

Основные методы селекции — отбор, гибридизация, полиплоидия, мутагенез, а также клеточная и генная инженерия.

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор , который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора
Признак Естественный отбор Искусственный отбор
Исходный материал для отбора Индивидуальные признаки организмов
Отбирающий фактор Условия среды (живая и неживая природа) Человек
Путь благоприятных изменений Остаются, накапливаются, передаются по наследству Отбираются, становятся производительными
Путь неблагоприятных изменений Уничтожаются в борьбе за существование Отбираются, бракуются, уничтожаются
Направленность действия Отбор признаков, полезных особи, популяции, виду Отбор признаков, полезных человеку
Результат отбора Новые виды Новые сорта растений, породы животных, штаммы микроорганизмов
Формы отбора Движущий, стабилизирующий, дизруптивный Массовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом . Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины:

  1. удвоение хромосом в неделящихся клетках,
  2. слияние соматических клеток или их ядер,
  3. нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом.

Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Подробное решение параграф § 66 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014

  • Гдз рабочая тетрадь по Биологии за 10 класс можно найти

1. Что такое гетерозис?

Ответ. Гетерозис - увеличение жизнеспособности гибридов вследствие унаследования определённого набора аллелей различных генов от своих разнородных родителей. Это явление противоположно результатам инбридинга, или близкородственного скрещивания, приводящего к гомозиготности. Увеличение жизнеспособности гибридов первого поколения в результате гетерозиса связывают с переходом генов в гетерозиготное состояние, при этом рецессивные летальные и полулетальные аллели, снижающие жизнеспособность гибридов, не проявляется. Также в результате гетерозиготации могут образовываться несколько аллельных вариантов фермента, действующих в сумме более эффективно, чем поодиночке (в гомозиготном состоянии) . Механизм действия гетерозиса ещё не окончательно выяснен. Явление гетерозиса зависит от степени родства между родительскими особями: чем более отдалёнными родственниками являются родительские особи, тем в большей степени проявляется эффект гетерозиса у гибридов первого поколения.

Явление гетерозиса наблюдалось ещё до открытия законов Менделя И. Г. Кёльрейтером, термин «гетерозис» (в переводе с греческого языка - изменение, превращение), в 1908 Г. Шулл описал гетерозис у кукурузы

У растений (по А. Густафсону) выделяют три формы гетерозиса: т. н. репродуктивный гетерозис, в результате которого повышается плодородность гибридов и урожайность, соматический гетерозис, увеличивающий линейные размеры гибридного растения и его массу, и приспособительный гетерозис (называемый также адаптивным), повышающий приспособленность гибридов к действию неблагоприятных факторов окружающей среды

2. Какие виды гибридизации вам известны?

Ответ. В селекции растений используется такой метод, как гибридизация. При этом скрещивают организмы, отличающиеся наследственностью, то есть одной и более парами аллелей генов, а следовательно одним или несколькими внешними признаками. Этот метод селекции включает инбридинг (внутривидовую гибридизацию) и аутбридинг (отдаленную, или межвидовую гибридизацию).

Издавна люди наблюдали процесс естественной гибридизации. Так, животные-гибриды – мулы – были известны еще 2000 лет до нашей эры. Впервые искусственную гибридизацию произвел ученый-садовод Т. Фэрчайлд, который скрестил два вида гвоздик. Научные основы генетики были заложены Менделем, который проводил опыты по гибридизации гороха. Заключается в том, что при оплодотворении происходит слияние двух различных по генотипу половых клеток с образованием зиготы, из которой развивается новый организм, наследующий признаки обоих родителей. Естественная гибридизация происходит в природе, искусственная осуществляется человеком в селекции или с другими целями. При этом у покрытосеменных цветки материнского растения опыляются пыльцой другого вида или сорта.

В селекции растений гибридизация используется чрезвычайно широко. Если данный метод необходим с целью соединения желательных свойств исходных организмов, это «комбинационная селекция». В том случае, когда преследуется цель получения и отбора генотипов более лучшего качества, по сравнению с родительскими формами, говорят о «трансгрессивной селекции».

В растениеводстве распространена гибридизация форм в пределах одного вида, или внутривидовая. В результате использования этого метода было создана большая часть сортов культурных растений. Отдаленная гибридизация является более сложным и трудоемким методом развития гибридов. Основная проблема при получении отдаленных гибридов – несовместимость гамет скрещиваемых форм и стерильность полученных гибридов.

Технологические процессы гибридизации различных сельско-хозяйственных культур существенно различаются между собой. Для получения гибридных форм кукурузы растения двух сортов высевают рядами поочередно, а султаны на материнских растениях срезают за несколько дней до цветения. У культур с перекрестным опылением цветков, например, ржи, используют кастрацию цветков материнских растений. У плодовых деревьев кастрация выполняется за 1-2 дня до того, как распустятся бутоны, а женские цветки изолируют, накрывая марлей. После раскрывания бутонов на рыльца пестиков наносят заранее заготовленную пыльцу. Из гибридных семян выращивают новые растения, помещая семена в специальную питательную среду и обеспечивая благоприятные условия для роста.

3. В чем опасность близкородственного скрещивания?

Ответ. Инбридинг - (англ. inbreeding, от in - в, внутри и breeding - разведение), близкородственное скрещивание, скрещивание организмов, имеющих общих предков. Общность происхождения скрещиваемых организмов увеличивает вероятность наличия у них одних и тех же аллелей любых генов, поэтому вероятность появления гомозиготных организмов возрастает с повышением степени родства. Наибольшая степень инбридинга. достигается при самоопылении у растений и самооплодотворении у животных. Поскольку высокая степень инбридинга часто на практике приводит к появлению организмов с различными наследственными аномалиями, в селекции с целью сохранения для породы или сорта аллелей, ценных с хоз. точки зрения, применяют инбридинг умеренной степени. Неблагоприятные последствия инбридинга высокой степени служат генетическим обоснованием нежелательности близкородственных браков у человека. Инбридинг используется для выявления рецессивных аллелей, получения гомозиготных по многим аллелям организмов (чистых линий), для сохранения в популяциях (породах, сортах) аллелей, определяющих наличие тех или иных признаков. В селекции растений применяют термин «инцухт».

Одно из важных последствий инбридинга – повышение частоты проявления вредных рецессивных аллелей. Обычно такие аллели находятся в популяции в гетерозиготном состоянии и их проявление подавлено нормальным доминантным аллелем. Переход вредных аллелей в гомозиготное состояние ухудшает приспособленность потомства, снижает его плодовитость, жизнеспособность и устойчивость к болезням. Происходит вырождение потомства, или инбредная депрессия. Однако в природных популяциях самоопыляющихся растений инбредная депрессия не возникает, несмотря на высокую степень гомозиготности: естественный отбор выбраковывает вредные рецессивные аллели по мере их перехода в гомозиготное состояние.

В селекции для создания пород и сортов, у которых были бы максимально выражены хозяйственно ценные признаки, проводят в каждом поколении искусственный отбор лучших родителей. При этом для получения однородных линий организмов с устойчивыми желаемыми признаками систематически повышают гомозиготность путём инбридинга. Чтобы избежать его вредных последствий, скрещивают организмы из различных (независимых) инбредных линий. Таким образом, удаётся сохранить гомозиготность по желаемым признакам, а вредные аллели перевести в гетерозиготное состояние. Кроме того, таким способом получают эффект, обратный инбредной депрессии, – гетерозис, широко используемый в селекции.

Вопросы после § 66

1. С чем связаны особенности селекции животных.

Ответ. Методы селекции животных те же, что и методы селекции растений, но при их применении селекционерам приходится учитывать ряд особенностей, характерных для животных. Животные размножаются только половым путем, а количество особей в потомстве невелико. В связи с этим при подборе селекционеру важно определить наследственные признаки, которые непосредственно у производителей могут не проявляться, например наследственные признаки самцов по жирномолочности или яйценоскости. Поэтому значительную роль приобретает оценка животных по их родословной и по качеству их потомства. Часто большое значение имеет учет экстерьера, т. е. совокупности внешних признаков животного. К основным направлениям селекции животных относят:

– сочетание высокой продуктивности с приспособленностью пород к условиям среды конкретных природных зон;

– повышение роли качественных показателей продуктивности животных (жирномолочность, соотношение мяса, жира и костей у мясных животных, качество меха и шерсти и т. д.);

– выведение пород интенсивного типа, снижающих экономические затраты;

– повышение устойчивости к заболеваниям и др.

2. Почему массовый отбор в селекции животных практически не применяется?

Ответ. Массовый отбор практически не применяется из-за небольшого количества особей в потомстве.

3. В связи с чем при создании новых пород животных, как правило, сочетают методы близкородственной и неродственной гибридизации?

Ответ. В селекции животных применяют два вида гибридизации: родственную (инбридинг) и неродственную (аутбридинг).

Родственное скрещивание между братьями и сестрами или между родителями и потомством ведет к гомозиготности и часто сопровождается ослаблением животных, уменьшению их устойчивости к неблагоприятным факторам среды, снижению плодовитости и т. д. Тем не менее инбридинг применяют в селекции животных с целью закрепления в породе характерных хозяйственно ценных признаков. Как правило, близкородственное скрещивание ведется в нескольких линиях внутри породы. Для устранения неблагоприятных последствий инбридинга используют неродственное скрещивание разных линий или даже разных пород. Это скрещивание сопровождается строгим отбором, что позволяет усиливать и поддерживать ценные качества породы.

Сочетание близкородственного скрещивания с неродственным широко применяется селекционерами для выведения новых пород животных. Так, известный селекционер М. Ф. Иванов, используя эту методику, создал высокопродуктивную породу свиней Белая степная украинская, породу овец Асканийская рамбулье и др.

Межвидовые гибриды лошади с ослом (мул), одногорбого и двугорбого верблюдов (нар), яка с крупным рогатым скотом и других с древних времен используются человеком. Эти гибриды обладают повышенной выносливостью по сравнению с родителями.

В некоторых случаях отдаленная гибридизация домашних животных с дикими предками дает плодовитое потомство и может быть использована в селекции. Так, в результате скрещивания тонкорунных овец мериносов с диким бараном архаром были получены тонкорунные архаромериносы, которые могут круглогодично пастись на высокогорных пастбищах. В результате скрещивания крупного рогатого скота с горбатым зебу получены ценные группы молочного скота.

В селекции животных, кроме описанных выше методов, применяют искусственное осеменение (введение полученной от высокоценных самцов спермы в половые пути самки с целью ее оплодотворения) и полиэмбрионию (искусственное образование нескольких зародышей из одной зиготы ценных пород с последующим их введением в матку беспородных животных). Эти методы позволяют в несколько раз увеличить скорость получения потомства от ценных производителей.

4. Какой метод используется для получения бройлерных цыплят? На каком явлении он основан?

Ответ. Важным направлением в селекции животных является использование явления гетерозиса. Особенно широко это направление применяется в птицеводстве, например для получения бройлерных цыплят.

5. Почему рождение овечки Долли можно рассматривать как важное событие с биологической точки зрения, но не как перспективное направление в селекции животных?

Ответ. В последующем были клонированы из исходного материала (клетки молочной железы) ещё четыре овечки, которые также носят клички Dollies. Проведённое позднее исследование 13 клонированных овец достигших возраста 7-9 лет показало что все они находятся в полном здравии, признаков каких-либо болезней пока не выявлено (если не считать некоторые проявления остеоартрита у некоторых из них).

В дальнейшем британскими и другими учёными были проведены эксперименты по клонированию различных млекопитающих, включая лошадей, быков, кошек, собак. В них также использовалась технология замещения ядер ооцита ядрами соматических клеток, взятых у живых взрослых теплокровных животных (мышь, коза, свинья, корова). Также проводились эксперименты по той же технологии с клонированием замороженных мёртвых животных.

Важно отметить, что продолжительность жизни клонированных животных, если они достигают половозрелого возраста, как правило, не отличается сколь-нибудь существенно от продолжительности жизни обычных животных данного вида.

Клонирование может быть использовано как для сохранения вымирающих видов, так и для воспроизводства трансгенных, искусственных видов и пород. Но такие простые методы, как те, что применялись при получении Долли, не могут решить проблему генетического многообразия. Для её решения необходимо разрабатывать более дорогие и гибкие подходы.

Клонирование может быть также использовано для восстановления вымерших животных. Так, в 2009 году было объявлено о восстановлении одного из видов испанских коз, уже вымерших в неволе и в природе. Группой учёных из Оксфордского университета под руководством Бет Шапиро (англ. Beth Shapiro) ведутся эксперименты по генетической реконструкции вымершей птицы дронта. В перспективе клонирование может быть использовано для восстановления даже таких животных, как мамонты и динозавры.

Успех эксперимента с Долли вызвал моментальную и обширную реакцию общества. Диапазон мнений был очень широк: от уподобления удачи сотворению Евы из ребра Адама до трудов доктора Франкенштейна, способных погубить весь человеческий род.

Клонирование Долли поставило перед обществом ряд этических и философских вопросов. Последнее связано прежде всего с тем, что по прогнозам некоторых учёных оставалась дистанция лишь в десяток лет до клонирования человека.

Со стороны учёных вне оспаривания самого факта опыта критиковались его невысокая эффективность (выжила только 1 из 277 яйцеклеток) и недостаточная частота - научный подход требует устойчивой повторяемости опыта и анализа большего массива результатов.

Обсудите проблему возможности клонирования животных с биологической, хозяйственной и этической точек зрения.

Ответ. Репродуктивное клонирование может позволять исследователям клонировать животных с потенциальной выгодой для областей медицины и сельского хозяйства. Например, те же самые Шотландские исследователи, которые клонировали Долли, получили другую овцу. Она была генетически модифицирована, чтобы давать молоко, которое содержит человеческую основу белка для крови. Есть надежда, что в дальнейшем этот белок может отбираться из молока и подаваться человеку в чистом виде, это очень поможет людям, у которых низкая свертываемость крови. Так же можно использовать животных, для того чтобы тестировать на них новые виды лекарств и обычную продукцию, предназначенную для человека. Большое преимущество использования клонированных животных для проверки на таблетки состоит в том, что все они являются генетически идентичными, что означает, что их реакция на таблетки должна быть боле менее сходной, чем у животных с различным генетическим набором.

Другой причиной для клонирования может служить то, что существуют популяции животных, которые стоят на грани вымирания. В 2001 году именно по этой причине ученые произвели первого клона, подвергнутого опасности вымирания - азиатского вола.

Печально, но этот детеныш, который развивался в матке у своей мамы-заместителя погиб всего лишь через три дня после своего рождения. Этот опыт был перенят и уже через два года, в 2003 году, ученые создают клон особи вола, так же стоящего на грани исчезновения. Вскоре 3 африканских диких кошки были клонированы из замороженных эмбрионов, которые были использованы в качестве ДНК. Несмотря на то, что некоторые эксперты считают, что клонирование спасает особи, стоящие на гране вымирания; некоторые ученые считают, что клонирование несет негативный характер, так как все особи имею генетически идентичный набор хромосом, что в целом играет отрицательную роль, так как для выживания разновидности необходимы разные варианты ДНК.

Репродуктивное клонирование - очень неэффективная техника и большинство клонированных животных эмбрионов, не могут развиваться в здоровых особях. Например, Долли была единственным клоном, который был рожден живым из общего количества 277 клонированных эмбрионов. Эта очень низкая эффективность, объединенная беспокойствами по поводу безопасности, представляет серьезное препятствие для применения репродуктивного клонирования. Исследователи выявили некоторые проблемы со здоровьем у овцы и других млекопитающих, которые были клонированы. Это увеличение размера плода при рождении и разнообразные дефекты в жизненных органах, типа печени, мозга и сердца. Другими последствиями являются преждевременное старение и проблемы с иммунной системой.

Другая потенциальная проблема заключается в возрасте хромосомы клонируемой клетки. Все клетки проходят их нормальные стадии деления. Кончик хромосомы, который называется теломером, с каждым делением укорачивается. Через какое-то время теломер становится настолько маленьким, что клетка не может больше делиться, и в конечном итоге погибает. Это обычный процесс старения, который присущ всем типам клеток. Следовательно, клоны, созданные от клетки, принятой от взрослой особи, могут иметь хромосомы, которые уже короче, чем нормальная, и это может повлиять на быстрое старение клонированной особи. И действительно, Долли, которая была клонирована от клетки шестилетней овцы, имела хромосомы, теломеры которого были короче, чем у овец ее возраста. Долли умерла в возрасте 6 лет, приблизительно половина продолжительности жизни овцы, которая составляет 12 лет. Работы по клонированию позвоночных, начатые на амфибиях в начале 1950-х годов и интенсивно продолжающиеся уже более пяти десятилетий, в последние годы широко обсуждаются не только с точки зрения масштаба научных достижений, но и с этических, социальных, биологических и ряда иных позиций.

Ведь чем ближе вероятность создания клонированного человека, тем выше настороженность в обществе, вызванная такими «далеко идущими» перспективами.

Сообщение о существовании Долли, как уже отмечалось, имело немедленный и в основном негативный отклик со стороны общественного мнения и вызвало шквал законодательных ограничений. Опасения были связаны с открывающейся перспективой клонирования людей. Заговорили как о непосредственной опасности таких экспериментов, так и об этической стороне вопроса.

Если отвлечься от научных проблем и немного пофантазировать, то легко можно представить использование клонирования для получения людей - генетических копий близких родственников, знаменитых спортсменов, известных кинозвезд и ученых. Однако во всех этих случаях можно опасаться того, что клонированные люди будут всего лишь генетическими копиями определенных людей, или близнецами. А, как известно, человеческая индивидуальность определяется не только генами, но и условиями окружающей среды, в которых вырос человек.

Обсуждалась также возможность клонирования одного из партнеров в семьях, по каким-либо причинам не имеющим детей, и проблема отношений в социуме к клонированным людям. Но все эти фантазии пока не имеют под собой реальной научной основы, так как вряд ли существующая техника клонирования, которую можно без натяжек назвать штучной и дорогостоящей, может в ближайшем будущем поставить перед обществом реальные практические проблемы. В тоже время не вызывает сомнения, что скоро техника клонирования из культуры клеток займет соответствующее место в медицине.

Речь о методе, основанном на использовании клонирования в сочетании с другими биологическими методами для решения проблем, связанных с пересадкой тканей и органов. Он сегодня все более осуществим, если на него не будет введен социальный запрет. В целом клонирование в терапевтических целях вызывает меньше этических возражений, поскольку в этом случае новый человек не создается. Хотя и здесь развернулась жаркая дискуссия: две крайние точки зрения на ограниченное клонирование отражают две морально-этические позиции по отношению к эмбриону человека. Эмбриолог Уинстон утверждает, что никто не собирается, да и не может клонировать человеческие эмбрионы. Все, что нужно специалистам, - получить ткань эмбрионального происхождения и выделить из нее участки клеток, с помощью которых можно будет лечить больных людей

Селекция - наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И.Вавилов особо выделял значение:

    Изучения сортового, видового и родового разнообразия интересующей нас культуры;

    Влияния среды на развитие интересующих селекционера признаков;

    Изучения наследственной изменчивости;

    Знаний закономерностей наследования признаков при гибридизации;

    Особенностей селекционного процесса для само- или перекрестноопылителей;

    Стратегии искусственного отбора.

Породы, сорта, штаммы - искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Наиболее богатыми по количеству культур являются древние центры цивилизации, именно там наиболее ранняя культура земледелия, более длительное время проводится искусственный отбор и селекция растений .

Основные методы селекции растений

Генная инженерия

Методы основаны на выделении нужного гена из генома одного организма и введении его в геном другого организма. «Вырезании» генов проводят с помощью специальных «генетических ножниц», ферментов - рестриктаз, затем ген вшивают в вектор - плазмиду, с помощью которого ген вводится в бактерию (рис. 342). Вшивание осуществляется с помощью другой группы ферментов - лигаз. Причем вектор должен содержать все необходимое для управления работой этого гена - промотор, терминатор, ген-оператор и ген-регулятор. Кроме того, вектор должен содержать маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Затем вектор вводится в бактерию, и на последнем этапе отбираются те бактерии, в которых введенные гены успешно работают.

Излюбленный объект генных инженеров - кишечная палочка , бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста - соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Второй путь - синтез гена искусственным путем. Для этого используются иРНК, с помощью фермента обратная транскриптаза на иРНК синтезируется ДНК.

Методы хромосомной инженерии.

Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков, или замещении одной пары гомологичных хромосом на другую. На этом основаны методы получения замещенных и дополненных линий , с помощью которых в растениях собираются признаки, приближающие к созданию «идеального сорта».

Очень перспективен метод гаплоидов , основанный на выращивании гаплоидных растений с последующим удвоением хромосом. Например, выращивают из пыльцевых зерен кукурузы гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2 - 3 года вместо 6 - 8 летнего инбридинга. Сюда же можно отнести и получение полиплоидных растений в результате кратного увеличения хромосом.

Методы клеточной инженерии.

Выращивание клеточных культур . Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

Гибридизация клеток. Например, разработана методика гибридизации протопластов соматических клеток. Удаляются клеточные оболочки и сливаются протопласты клеток организмов, относящихся к разным видам - картофеля и томата, яблони и вишни. Перспективно создание гибридом, при котором осуществляется гибридизация различных клеток. Например, лимфоциты, образующие антитела, гибридизируются с раковыми клетками. В результате гибридомы нарабатывают антитела, как лимфоциты, и «бессмертны», как раковые клетки. Следовательно, они обладают возможностью неограниченного размножения в культуре.

Клонирование . Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Создание химерных животных . Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.

Хорошим примером межпородного скрещивания может служить выведенная академиком Михаилом Федоровичем Ивановым (1871–1935) порода свиней – украинская белая степная. При создании этой породы использовались свиноматки местных украинских свиней с небольшой массой и невысоким качеством мяса и сала, но хорошо приспособленных к местным условиям. Самцами-производителями были хряки белой английской породы. Гибридное потомство вновь было скрещено с английскими хряками, в нескольких поколениях применялся инбридинг, были получены чистые линии, а при скрещивании их – родоначальники новой породы, которые по качеству мяса и массе не отличались от английской породы, а по выносливости – от украинских свиней.

Полиплоидия крайне редко встречается у животных. Интересен факт межвидового скрещивания тутового шелкопряда с последующим удвоением числа хромосом, проведенного академиком Борисом Львовичем Астауровым (1904–1974), который привел к созданию нового вида животных.

3. Явление гетерозиса у домашних животных

Так же как и у растений, у домашних животных наблюдается явление гибридной силы, или гетерозис. Оно заключается в том, что при скрещивании разных пород (а также при межвидовых скрещиваниях) иногда наблюдается особенно мощное развитие и повышение жизнеспособности в первом поколении гибридов. Это свойство, однако, в последующих поколениях затухает. Генетические основы гетерозиса у животных и у растений одинаковы.

Гетерозис широко применяют в животноводстве и птицеводстве – первое поколение гибридов, обнаруживающее явление гибридной силы, непосредственно используют в хозяйственных целях. Например, при скрещивании двух мясных пород кур получают гетерозиготных бройлерных кур. Для получения скороспелых свиней (на мясо и сало) скрещивают дюрокджерсейскую и беркширскую породы. Гибриды дают прирост на 10–12% выше представителей исходных пород.

4. Метод анализа наследственно ценных производителей по потомству

При селекции домашних животных очень важно определить наследственные качества самцов по признакам, которые непосредственно у них не проявляются, например по молочности и жирномолочности у быков или яйценоскости у петухов. Для этого используют метод анализа (испытания) производителей по потомству.

Сначала от самца-производителя получают немногочисленное потомство и сравнивают его продуктивность с продуктивностью матери и продуктивностью породы. Если продуктивность дочерей оказывается выше продуктивности породы и продуктивности матери, то это указывает на большую ценность производителя, которого следует использовать для дальнейшего улучшения породы.

От хорошего самца можно получить большое потомство, особенно если применить искусственное осеменение. Сперму, полученную от хорошего производителя, можно хранить долгое время, используя метод криохранения в жидком азоте.

С помощью гормональной суперовуляции и трансплантации у выдающихся коров-рекордисток по удоям можно забирать десятки эмбрионов в год, а затем имплантировать их в других менее ценных коров. Эмбрионы также хранятся при температуре жидкого азота. Это дает возможность увеличить в несколько раз число потомков от выдающихся производителей.

5. Особенности отбора в селекции животных

В селекции животных искусственный отбор также проводится в двух формах.

Массовый отбор – выбраковка особей, по фенотипу не соответствующих породным стандартам. Его назначение заключается в сохранении постоянства породных качеств.

Индивидуальный отбор – отбор отдельных особей с учетом наследственной стойкости признаков, обеспечивающих совершенствование породных качеств.

В селекции животных чаще применяется индивидуальный отбор. Причем отбор идет с учетом экстерьерных признаков. Экстерьер (от лат. exterior – внешний) – совокупность внешних признаков животного – телосложение, соотношение частей тела и т.д. Любой организм представляет собой целостную систему, поэтому определенное телосложение животного может свидетельствовать о его высокой мясной или молочной продуктивности (вспомните о соотносительной, или корреляционной, изменчивости). Таким образом, через экстерьер пытаются выяснить генотип животного.

6. Достижения селекции животных

Больших успехов в XX в. добились селекционеры-животноводы. На основе методов подбора и гибридизации, результативность которых была ярко продемонстрирована, в частности в уже упоминавшихся работах М.Ф. Иванова, были созданы новые замечательные породы всех видов домашних животных. На основе вышеупомянутой гибридизации дикого барана-архара с мериносами с последующим отбором животных, сочетающих в себе желательные качества, и с использованием близкородственного скрещивания Н.С. Батурин и Я.Я. Лусин вывели в Казахстане породу архара-мериноса, имеющую высокую шерстную продуктивность тонкорунных овец и присущую архару хорошую приспособленность к условиям высокогорных пастбищ.

На основе использования методов межпородного скрещивания и дальнейшего строгого отбора выведены породы крупного рогатого скота с высоким уровнем молочной продуктивности и большим содержанием жира в молоке. Примером может служить костромская порода крупного рогатого скота, созданная на основе скрещивания местного поголовья с производителями других пород с последующим строгим отбором и подбором, основанным на оценке племенных качеств животных. Высокая продуктивность животных этой породы характеризуется тем, что отдельные коровы дают от одного отела до другого свыше 16 тыс. кг молока.

Межпородное скрещивание было использовано также при создании новой мясо-шерстной породы овец. В качестве исходных родительских пород были выбраны алтайская тонкорунная порода, которая характеризуется хорошим качеством шерсти и высокой приспособленностью к местным условиям, и две английские скороспелые мясо-шерстные породы. Полученная в результате длительной селекционной работы и гибридизации порода характеризуется крепкой конституцией, большой живой массой (бараны – 110–115 кг, матки – 60–62 кг) и высоким настригом шерсти, которая отличается блеском, эластичностью и т.д.

На основе селекции с использованием внутривидовых межпородных, а также межвидовых и даже межродовых скрещиваний с последующим отбором созданы высокопродуктивные, быстрорастущие, обладающие высокими вкусовыми качествами породы рыб. В качестве примера укажем на высокопродуктивного ропшинского карпа (от названия поселка Ропша под Санкт-Петербургом), обладающего высокой продуктивностью и зимостойкостью (выведен В.С. Кирпичниковым), и украинские породы карпа (А.И. Кузема и др.). Весьма перспективен межродовой гибрид стерляди и белуги – бестер, обладающий высокими темпами роста (гетерозис) и прекрасными вкусовыми качествами.

Используя методы отбора и гибридизации, человек коренным образом изменил природу используемых им растений и животных. Современная биология, в особенности генетика и цитология, существенно обогатили теорию и практику селекции, вооружили и будут вооружать ее новыми высокоэффективными методами управления формообразованием организмов и создания высокопродуктивных сортов растений и пород животных.

III. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала.

IV. Домашнее задание

1. Изучить параграф учебника (особенности биологии животных, учитываемые в селекции; методы, способы разведения и достижения селекции животных).

2. Заполнить табл. 3 «Основные методы селекции растений и животных».

3. Повторить материал по теме «Селекция растений» (на следующем уроке – тестовая проверка знаний).

Таблица 3. Основные методы селекции растений и животных

Методы

Селекция растений

Селекция животных

Подбор родительских пар

Географически удаленные или генетически отдаленные (неродственные) формы

По хозяйственно-ценным признакам и экстерьеру

Скрещивание неродственное (аутбридинг)

Внутривидовое, межвидовое, межродовое, ведущее к гетерозису и высокой продуктивности

Скрещивание отдаленных пород, отличающихся контрастными признаками, для получения гетерозиготных популяций и проявления у их представителей гетерозиса

Скрещивание близкородственное (инбридинг)

Самоопыление перекрестноопыляющихся растений путем искусственного воздействия с получением чистых линий

Скрещивание между близкими родственниками для получения чистых линий с желательными признаками

Отбор массовый

Применяется в отношении перекрестноопыляемых растений

Применяется с целью выбраковки особей, по фенотипу не соответствующих породным стандартам

Отбор индивидуальный

Применяется в отношении самоопыляющихся растений и при искусственном самоопылении перекрестноопыляемых растений с целью выделения чистых линий – потомков одной самоопыляющейся особи

Применяется жесткий отбор по хозяйственно-ценным признакам, выносливости, экстерьеру и др.

Метод испытания производителей по потомству

Не применяется

Используется метод искусственного осеменения от лучших самцов-производителей, качества которых проверяют по дочерям

Экспериментальное получение полиплоидов

Применяется для получения более урожайных форм

Практически не применяется

Индуцированный мутагенез

Применяется с целью получения исходного материала

Практически не применяется

Урок 10–11. Селекция микроорганизмов. Биотехнология

Оборудование: таблицы по общей биологии, схемы иллюстрирующие методы и достижения селекции животных и микроорганизмов.

ХОД УРОКА

I. Обобщение знаний раздела

А. Работа по карточкам

№ 1. Допустим, для фермы приобрели двух быков, у которых ген жирности молока точно не известен. Как следует поступить, пользуясь методом гибридизации, чтобы решить, какого из быков эффективнее использовать в качестве производителя?

№ 2. С какой особью нужно скрестить гетерозиготную особь свиньи, чтобы в потомстве рецессивный ген скороспелости перевести в гомозиготное состояние? Почему?

№ 3. Покажите на примере, почему при выведении высокопродуктивных пород домашних животных в селекционной практике используется близкородственное скрещивание, которое, как правило, приводит к понижению жизнеспособности и плодовитости организма и не применяется в промышленном животноводстве.

Б. Устная проверка знаний

1. Каковы биологические особенности животных, учитываемые в селекции?

2. Каковы типы скрещиваний, применяемые в селекции животных?

3. Каковы методы разведения, используемые в животноводстве?

4. В чем состоит гетерозис у домашних животных?

5. В чем состоит метод испытания хозяйственно-ценных производителей по потомству?

6. В чем состоят особенности отбора в селекции животных?

7. Каковы достижения селекции животных?

В. Тестовая проверка знаний по вариантам

Необходимо выбрать один правильный ответ из предложенных четырех.

Вариант 1

1. Какой отбор следует применять при селекции гороха?

а) индивидуальный;
б) массовый;
в) стихийный;
г) стабилизирующий.

2. Что такое «чистая линия»?

а) потомство от самоопыляющегося растения;
б) потомство от перекрестноопыляемого растения;
в) потомство от скрещивания двух растений одного сорта;
г) растение с четко проявляющимися сортовыми признаками.

3. Для чего проводят самоопыление перекрестноопыляемых растений?

а) для получения биологически отдаленных гибридов;
б) для получения эффекта гетерозиса;
в) для получения чистых линий;

4. Как преодолеть бесплодие биологически отдаленных растительных гибридов?

а) на сегодняшний день нет методов преодоления бесплодия;
б) с помощью полиплоидии;
в) с помощью инбридинга;
г) с помощью индивидуального отбора.

5. Какое растение не относится к самоопыляющимся?

а) горох;
б) рожь;
в) пшеница;
г) томат.

6. Сорт озимой пшеницы Мироновская 808 был выведен:

а) В.С. Пустовойтом;
б) П.П. Лукьяненко;
в) Н.В. Цициным;
г) В.Н. Ремесло.

7. Метод ментора в селекции растений применяют с целью:

а) акклиматизации;
б) реакклиматизации;
в) усиления доминирования признака;
г) закаливания гибридов.

8. Инбридинг у животных приводит к:

а) гетерозису;
б) улучшению свойств породы;
в) депрессии;
г) созданию новой породы.

9. Систематический таксон, который не может быть создан в результате селекции, – это:

а) вид;
б) сорт;
в) порода;
г) штамм.

10. Явление гетерозиса, как правило, наблюдается при:

а) инбридинге;
б) отдаленной гибридизации;
в) создании генетически чистых линий;
г) самоопылении.

Вариант 2

1. Какой отбор следует применять при селекции огурцов?

а) индивидуальный;
б) массовый;
в) стабилизирующий;
г) разрывающий.

2. Как называется самоопыление перекрестноопыляющихся растений?

а) аутбридинг;
б) инбридинг;
в) отдаленная гибридизация;
г) анеуполиплоидия.

3. Что такое гетерозис?

а) усиление плодовитости гибрида;
б) географически отдаленные гибриды;
в) депрессия, которая наступает при самоопылении перекрестноопыляемых растений;
г) повышенная жизнеспособность и урожайность межлинейных гибридов.

4. Для чего применяют перекрестное опыление самоопыляющихся растений?

а) для получения эффекта гетерозиса;
б) для получения чистых линий;
в) для получения биологически отдаленных гибридов;
г) для получения гибридов, сочетающих в себе признаки разных сортов.

5. Какое растение не относится к перекрестноопыляемым?

а) подсолнечник;
б) ячмень;
в) кукуруза;
г) рожь.

6. Украинская белая степная порода свиней была выведена:

а) А.И. Куземой;
б) Н.С. Батуриным;
в) М.Ф. Ивановым;
г) Я.Я. Лусиным.

7. В селекции животных очень редко используется:

а) инбридинг;
б) аутбридинг;
в) массовый отбор;
г) индивидуальный отбор.

8. Отбор, проводимый по фенотипу, называется:

а) массовым;
б) индивидуальным;
в) естественным;
г) искусственным.

9. Домашние животные в отличие от растений:

а) имеют многочисленное потомство;
б) дольше живут;
в) размножаются только половым путем;
г) не нуждаются в тщательном уходе.

10. В селекции растений и животных используется:

а) анализ качества производителей по потомству;
б) гибридизация;
в) получение полиплоидных форм;
г) метод ментора.

Ответы к тестовым заданиям

Вариант 1:

1а; 2а; 3в; 4б; 5б; 6г; 7в; 8в; 9а; 10б.

Вариант 2:

1б; 2б; 3г; 4г; 5б; 6в; 7в; 8а; 9в; 10б.

Г. Проверка заполнения таблицы «Основные методы селекции растений и животных»

II. Изучение нового материала

1. Биологические особенности микроорганизмов и методы селекционной работы с ними

Как всегда, разговор о новом объекте селекции начнем с его биологических особенностей. К биологическим особенностям микроорганизмов, учитываемым в селекции, следует отнести:

– высокую скорость размножения;
– большую частоту появления мутаций;
– неоднородность штамма и эффективность отбора.

Штамм (от нем. Stamm – ствол, основа; семья, племя) – чистая культура микроорганизма, выделенного из определенного источника или полученного в результате мутаций.

К середине прошлого века возникла новая отрасль промышленности – микробиологическая, которая использует одноклеточные грибы, бактерии для производства сложных органических веществ. Микробиологическая промышленность является составной частью биотехнологии.

Такие отрасли пищевой промышленности, как хлебопечение, производство спирта, некоторых органических кислот и витаминов, виноделие и многие другие, основаны на деятельности микроорганизмов.

Исключительно большое значение для здоровья человека имеют антибиотики. Это особые вещества – продукты жизнедеятельности некоторых бактерий и грибов, убивающие болезнетворные микробы. Благодаря антибиотикам многие болезни излечиваются относительно легко, тогда как ранее они давали большой процент смертности. Витамины, столь необходимые для человека, вырабатываются растениями и некоторыми микроорганизмами.

Продолжение следует